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Abstract. The coronal slow shock has been predicted to exist embedded in

large coronal holes at 4-I0 solar radii. We use a three-fluid model to study

the jumps in minor ion properties across the coronal slow shock. We formulate

the jump conditions in the de Hoffmann-Teller frame of reference. The Rankine-

Hugoniot solution determines the MHD flow and the magnetic field across the

shocks. For each minor ion species, the fluid equations for the conservation

of mass, momentum and energy can be solved to determine the velocity and the

temperature of the ions across the shock. We also obtain a similarity solution

for heavy ions. The results show that on the downstream side of the coronal

slow shock the ion temperatures are nearly proportional to the ion masses for

He, O, Si, and Fe in agreement with observed ion temperatures in the inner

solar wind. This indicates that the possibly existing coronal slow shock can

be responsible for the observed heating of minor ions in the solar wind.



i. Introduction.

Alpha particles and other minor ions have been extensively observed since

the first measurementof the solar wind. The dynamical behavior of alpha

particles and other minor ions in the solar wind is not yet well understood.

The helium to hydrogen abundanceratio _ - n_/np is highly variable. The long

term average value of _ is in the range of 0.03 to 0.06. The average value of

the speed ratio, Ua to Up, is slightly greater than 1.00. The speed ratio, U_

to Up, near 0.3 AU is greater than that near I AU. The most probable value of

T_/Tp is between 3 and 4. There is a strong tendency in the solar wind for the

ion temperatures to be roughly proportional to the masses [Bochsler, 1989;

Bochsler, et al., 1985; Hernandez, et al., 1987; Marsch, et al., 1982;

Neugebauer, 1981; Neugebauer and Snyder, 1966; Ogilvie, et. al., 1968;

Ogilvie, et al., 1989].

In this paper we study the jumps in flow properties for alpha particles and

other minor ions across slow shocks. A few slow shocks have been identified in

the solar wind [Richter, 1987], but the changes in properties of minor ions

across them have not been published. Observations of changes of alpha

particles velocity, density, and temperature have been published, both for

fast interplanetary shocks and for the earth's bow shock [Borodkova et al.,

1989; Fuselier at al., 1988; Neugebauer, 1970; Ogilvie et al., 1982; Zastenker

et al., 1986]. Both Ogilvie et al. [1982] and Bovodkovaet al. [1989] reported

that reacting to the presence of the cross-shock potential difference the

alpha particles are decelerated less than the protons and a temperature-mass

proportionality is introduced by the action of a fast shock. It has also been

observed that magnetic forces contribute appreciably to the slowing of ions in

the de Hoffmann-Teller frame of reference [Thomsenet al., 1987]. We expected

that slow shocks and fast shocks mayhave similar effects on the dynamical
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behavior of solar wind ions. This study concludes that the possibly existing

coronal slow shock can be responsible for the heating of minor ions and

perhaps the variation in flow velocities for different kinds of ions in the

solar wind.

The coronal slow shock has been predicted to exist embeddedin large

coronal holes at A-10 solar radii [Whang, 1982]. The model considers the

heliomagnetic polar regions of the sun as the sources of solar wind streams,

interplanetary magnetic fields of one polarity emanating from north polar cap

and fields of opposite polarity from south polar cap are separated by a

neutral sheet. In coronal space, the high-speed solar wind streams emanating

from the polar coronal holes are sub-Alfvenic flows of low-_ plasma. Studies

for the expansion of the solar wind from coronal holes in rapidly diverging

stream tubes indicate that supersonic speeds should be attained at points low

in the corona [Kopp and Holzer, 1976; Munro and Jackson, 1977_ Whang, 1983;

Whangand Chien, 1978]. Streams originating from the edge of the polar open-

field regions flow around the curved boundary of the helmet-shaped, closed-

field region. At the edge of the neutral sheet, the flow direction of each

stream changes suddenly, becoming parallel to the neutral sheet. Due to

dynamical interaction in north-south direction between neighboring stream

tubes, an oblique MHDslow shock can develop near the neutral point. The shock

is upstream inclined, and extends polewards to form a standing coronal slow

shock surrounding the sun.

Weuse a three-fluid model to study the jumps in the flow properties of

minor ions across slow shocks. We formulate the Jump conditions in the de

Hoffmann-Teller frame of reference. The Rankine-Hugoniot solution determines

the MHD flow and the magnetic field across the shocks. The main body of the



paper presents a three fluid model to calculate the flow of protons and alpha

particles across slow shocks under the assumption (a) n_ is a small fraction

of, but not negligible in comparison with, _p and (b) the flow properties of

electrons across slow shocks is specified by a polytropic relation. The model

is also used to calculate the flow of other minor ions (1606+, 28Si8+ and

56Fe16+) across slow shocks under the limits of n i << np.

The fluid equations for the conservation of mass, momentum and energy for

each kind of ion can be solved to determine the velocity and the temperature

of the ions across the shock. If the protons and each kind of minor ions (k -

He, O, Si, and Fe) have the same temperatures and the same velocities on the

upstream side of a slow shock, then the model shows that under reasonable

coronal conditions, on the downstream side of the coronal slow shock the

calculated ion temperatures are nearly proportional to the ion masses and the

average ion velocities are slightly greater than I. Assuming that these

conditions are preserved during the expansion of the solar wind between the

corona and 0.3 AU, the consistent results between this study and the

observations of minor ions in the inner solar wind suggest that these

observations support the theoretical prediction for the existence of the

coronal slow shock. We also obtain a similarity solution showing that on the

downstream side of a standing slow shock the temperatures are directly

proportional to masses for heavy ions.



2. Three-Fluid Model

2A. MHDShocks

The classical Rankine-Hugoniot Relation is used to study shocks in a MHD

fluid consisting of electrons, protons and alpha particles. We choose a

cartesian coordinates system: the xy-plane is the plane of coplanarity, the x

axis is normal to the shock surface pointing the direction of the mass flow,

and the tangential component of the magnetic field points in the positive

direction of the y-axis. We formulate the flow conditions in the de Hoffmann-

Teller frame of reference. Outside the shock layer, the MHD fluid velocity is

align with the magnetic field B, and the electric field E and the non-

coplanarity component of the magnetic field B z are zeros. Inside the shock

layer E - Ee x, and B, E, and the fluid properties for each kind of particles

(k - e, p and _) are functions of x only. This formulation includes a

noncoplanarity component of the magnetic field inside the shock layer

[Goodrich and Scudder, 1984; Gosling, et al., 1988; Jones and Ellison, 1987;

Thomsen, et al., 1987]. The equations for the conservation of mass, momentum

and energy are used to study the change in flow velocity and temperature for

minor ions across the shock.

The jumps in the magnetic field B and the fluid properties p, U, and T

outside the shock layer can be determined by the flow conditions upstream of

the shock using the Rankine-Hugoniot relation:

[pUx] - 0

pUx[U ] + [p + B2/8_]ex - Bx[B]/4_ - 0

[U2/2 + CpT] - 0

and

(1)

(2)

(3)



[Bx] - 0 (_)

Here the pair of square brackets denote the jump of a physical quantity across

the shock

[Q] " Q2 - QI (5)

the subscripts i and 2 respectively denote the flow conditions upstream and

downstream of the shock.

Whang [1987] has a simple direct method to calculate the solution of the

Rankine-Hugoniot relation to determine the jumps in the MHD flow and the

magnetic field across oblique MHD shocks. We use this method to calculate the

ratios B2/B I, p2/Pl, Ux2/Uxl, P2/PI and the shock angle 92 . (The shock angle #

is the angle between the shock normal and the magnetic field). They are

functions of three dimensionless upstream parameters: the shock Alfven number

A - Uxl/(al cos 91), the shock angle # 1 , and the plasma # value. (Here a is

the Alfven speed, and # the ratio of the thermal pressure PI to the magnetic

pressure B12/8_.) A shock is a slow shock if the shock Alfven number A less

than I and is a fast shock if A is greater than I. The magnetic field and the

shock angle decrease across a slow shock, they increase across a fast shock.

Shock solutions have been systematically studied in a three dimensional

parametric space [Edmiston and Kennel, 1986; Whang, 1988]. For given # and 81 ,

shock solutions exist in the domain of A > Ami n. Here the minimum shock Alfven

number

2
Ami n - {I + 5#/6 - {(I + 5#/6) 2 - lO#cos281/3}I/2)/2cos201 (6)

for slow shocks, and

2
Ami n - (i + 5#/6 + ((I + 5#/6) 2 - lO#cos281/3}I/2)/2cos201 (7)



for fast shocks. Evolutionary shocks do not exist in the domain of A < Ami n.

There are no jumps in MHD flow properties and magnetic field when A - Ami n. At

any given value of _, a whole range of changes in B2/B I, from 0 to i, may take

place in the solution domain. The range of change in thermodynamic properties

strongly depends on the _ value. Slow shocks covering a wide range of jumps in

thermodynamic properties (such as p and p) exist in the low _ region (_

0.I). On the other hand, only slow shocks with weak jumps in thermodynamic

properties exist in the high _ region (_ _ I). Therefore, in the coronal space

where the _ value of the solar wind is of the order of 0.i, all physical

properties may jump across a slow shock over a wide range of magnitudes. Near

I AU the plasma _ value is in the order of i, the jumps in thermodynamic

properties across a slow shock must be small but the change in the magnetic

field is not necessarily small.

In place of the shock Alfven number, shock Mach number is sometimes used as

an independent variable to calculate the shock relationships. The shock Mach

number is defined as the ration of U n to the magnetoacoustic speed, C s for

slow shocks and Cf for fast shocks. In the M,_,8 parameter space, slow shock

solutions exist in the domain of

i < M 2 < {1.2 + _ + ((1.2 + 8) 2 4.8_ cos28)I/2}/2_ (8)
m

2B. Three Species of the MHD Fluid

We denote the three species of the MHD fluid, electrons, protons and alpha

particles, respectively by subscripts e, p and a. We consider that the number

density of alpha particles n_ is a small fraction of, but not negligible in

comparison with the proton number density np. Inside the shock layer the

charge density is in the order of (h/6)2ne e, where h is the Debye shielding



distance and 6 measures the shock thickness. Since h << 6, we may assume that

to the zeroth order of magnitude

ne - np + 2n_ (9)

In the de Hoffmann-Teller frame of reference, the electric field inside the

shock layer is generated entirely by the charge separation which is a first

order quantity. Now we can express the density and the flow velocity of the

fluid consisting of three kinds of charged particles as

p - _pnp(1 + 4,) (i0)

Up + 4_U_
U - (ll)

1 +4_

Since this study is concerned with different velocities and temperatures

for alpha particle an protons, we should introduce the diffusion velocities

and

W_-U -U

Wp - Up - U

(12)

They are respectively the velocities of alpha particles and protons in a frame

of reference moving at the fluid velocity U. Wp is expected to be very small

compared with W_. Depending on the frame of references, there are two pressure

tensors for alpha particles: (P_*)ii the ii component of the pressure tensor

in the frame of reference moving at the fluid velocity U, and (P_)ii in the

frame of reference moving at the flow velocity of alpha particle U_,

( _ )ii (P_)ii + m_n_W_i2 (13)

A similar relationship exists between (Pp*)ii and (Pp)ii" The fluid pressure

I0



calculated from the Rankine-Hugoniot equations is the average of pressure

tensor in the fluid frame of reference

w_ p * pp*)p . I Z { ( = )ii + ( if + (Pe*)ii }
3 i

(14)

On the other hand, the temperatures of alpha particles and protons are

respectively defined in the frame of reference moving at flow velocities of

alpha particles and protons. Namely

n_kT_ --!i E (P_)ii
3 i

and
npkTp --!i E.(Pp)ii

3 i

(15)

From these relations, we obtain that the fluid pressure

P - k(nprp + n=r_ + neTe) + --!-I (mpn_Wp2_ + m_n=W=2) (16)
3

In the next two subsections, we will develop a three-fluid model to

calculate the flow of alpha particles across slow shocks. The equations for

the conservation of mass, momentumand energy are used to calculate the change

in n_, U_ and T_. Oncewe have the solutions for the alpha particles and for

the MHDfluid, then we can calculate np, Tp, and Up.

2C. Loren=z Forces

Inside the shock layer, the electromagnetic field exerts a Lorentz force on

each kind of charge particles (k- e, p, =)

Lk " ZknkeE+ ! Jk x B (17)
C

where Z e - -I, Zp - i, Z_ - 2, and e is the elementary charge. This force and

its work done on the moving plasma affect the momentum flux and =he energy

II



flux of the charged particles across the shock layer. Note that the parallel

component of the electric current density makesno contribution to the Lorentz

forces. We may express the Lorentz force as the sum of two parts

Lk - LkE + LkM (IS)

The first part LkE represents the electric Lorentz force due to the electric

field and the electric drift current density and second part Lk M is the

magnetic Lorentz force due to perpendicular electric current caused by the

sudden change in the magnetic field configuration inside the shock layer.

We can express the Lorentz force due to the electric field and the electric

drift current density as

Lk E- Zknke (E + (E x B) x B/B 2}

or

LkE - Zknke E cos 8 e I (19)

where e I _ B/B is the unit vector along the field direction. Summing over all

kinds of charged particles,

Z Lu m - 0 (2O)
k

This means that the electric Lorentz force produces no net effect on jumps of

fluid properties for the MHD fluid, the mixture of all kinds of charged

particles, as shown in the Rankine-Hugoniot equations.

Making use of Ampere's law, the sum over all kinds of charged particles of

the Lorentz forces caused by the magnetic field configuration inside the shock

layer must be equal to (V x B) x B/A_

E Lk M - (V x B) x B/4_ (21)

k

12



Integration of this equation over the shock layer produces the accumulated

effects of the Lorentz forces which appears in the Rankine-Hugoniot equation

(2). Equation (21) provides an important constraint the magnetic Lorentz force

LkM. However, it is difficult to formulate the exact expression for each LkM

Our scheme is using the guiding-center theory to estimate the ratios LeM = LpM

= L_M, then can obtain a reasonably representation for each of them from (21).

The perpendicular electric current densities driven by the magnetic field

configuration can be calculated from the motion of the guiding centers which

are the instantaneous centers of the particle orbits. (The parallel component

of the electric current density makesno contribution to the Lorentz forces.)

Using the gyration theory of charged particles we can describes the effect of

the changing magnetic field configuration on the motion of the guiding center.

For each kind of charged particle there are three electric current densities

related to the magnetic field configuration= the gradient drift current, the

curvature drift current and the magnetization current. From these drift

current densities, we can obtain the portion of Jik driven by the magnetic

field configuration as

C

Jik - -- (P;Ik - Pik ) eI x _ (22)
B

where _ - el.re I is the curvature vector, II and i refer to directions relative

to the local magnetic field. _ points the instantaneous center of the circular

arc and the radius of curvature equals to I/_. This equation shows that the

perpendicular electric current density Jik (k - p, =, e) inside the shock

layer is directly proportional to the thermal pressure anisotropy (PIIk - Pik ).

Since the electrons are nearly thermally isotropic, our model assumes that

13



LeM - 0 (23)

Based on this formulation, we can obtain an estimate for the following ratios

: LmM- (PIIP (PII__M pip) : . pla) (24)

From Equations (21), (23) and (24) we obtain

LkM - Fk (V x B) x B/4_ (25)

for k - p and _ where

Fp -

PIIP " PiP

(PllP Pip ) + (P[la Pla )

(26)

PIIa - Pla

(PIIP PiP ) + (PIIa PIa)

(27)

2D. Jump Conditions for Alpha Particles

The equations for conservation of mass, momentum and energy for alpha

particles can be integrated to give

[n_U_x ] - 0 (28)

[n_m_U_x2 + n_kT_] - F_ (29)

[n_m_U_xU_y ] - G_ (30)

and

[U 2/2 + 5kT_/2ma] - - Z_e[4]/m_ (31)

where

14



Bx2 d B2
(32)

BxBy Bx ClByf

Ca',l <ZanaeE
(33)

and 4 is the electrostatic potential. The term on the right hand side of

Equation (31) represents an energy sink. The alpha particles do work as they

move against the electrostatic field inside the shock layer. Fa and Ga are

respectively the integration of Lax and Lay across the shock layer. They

represent the accumulated effects of the Lorentz forces over the shock layer

on the momentum flux of alpha particles. The first parts of Fa and Ga shows

that alpha particles are decelerated by the electric Lorentz forces. The

second parts of Fa and Ga represents the effects of the magnetic Lorentz

forces on alpha particles. Inside a slow shock, the magnetic Lorentz forces

accelerate alpha particles in the shock normal direction and decelerate alpha

particles in the tangential direction. Slow shocks occur in low $ plasma such

as in the solar coronal or in the geomagnetic tall environment. Equations (32)

and (33) show that except for parallel shocks the magnetic Lorentz forces

normally play an more important role than the electric Lorentz forces in

affecting the dynamical behavior of alpha particles crossing slow shocks. The

integrations for the z component of the momentum equations are not shown here

because they only produce first order corrections to the flow speeds.

Equations (28)-(31) are used to Calculate the ratios nax2/naxl, Uax2/Uaxl,

Uay2/Uay I and Ta2/Tal across the shock layer. We can first use (31) to

calculate the Jump in tangential velocity across the shock

G a

(34)
[Uay] - manalUax I

15



Then we solve Equations (28), (29) and (31) for n_x2/n_xl, Uax2/Uaxl and

T_2/Tal. The system of equations can be reduced to a quadratic equation for

U_x2/U_xl

where

(U_x2/Uaxl) 2 II(U=x2/U_xl ) + A0" 0

5 kT_l Fa

hi--g-- { i+ + }
m=U_xl 2 m_n_iU_xl 2

(35)

(36)

2
I [U_y ] 5kT_l Z_e [4]

A0 " -g-- 2 + " 2
4U_xl 4m_U_xl2 2m_U_xl

(37)

The equation has two roots associated with the _ signs of the square root

term. The solution with - sign represents the shock solution. This step

produces the most important dynamical effect of shock wave on alpha particles:

part of the kinetic energy is converted to increase the thermal energy. Once

we have U=x2/U=xl, we can calculate n=2/n=l, T=2/T=I from

and

n=2/n_l - Uaxl/U_x2

T=2 - r=l - (m_/5k)[U= 2] - (2Z_e/Sk)[4]

(38)

(39)

16



3. Results for Alpha Particles

3A. Computational Model

Section 2 provides a theoretical formulation for the Jumps in flow

properties of protons and alpha particles across slow shocks. The same

formulation can be used to calculate the jump of other minor ions across slow

shocks (in section 4) and to calculate the jump of ions across fast shocks (in

a separate paper). In order to carry out numerical computations, we need to

make three further assumptions with regard to (a) the flow conditions upstream

of the shock, (b) the electron flow across the shock, and (c) the thermal

anisotropy of protons and alpha particles. Note that once we have better

understanding about electron flow and thermal anisotropy of ions, the

theoretical formulation obtained in this paper can be upgraded to carry out

new calculations.

We assume that on the upstream side of the shock all kinds of particles

have the same flow velocity and the same fluid temperature

and

T_I - Tpl - Tel

U_I - Upl - Uel

(4O)

(41)

We assume that inside the shock layer the thermodynamic properties of

electrons may be described by a polytropic relation

Pe - Pel(ne/nel )7

or

Te _ Tel(ne/nel)7 - i

where 7 is the polytropic index ranging between 5/3 and 3 [Feldman, 1985;

(42)
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Schwartz, et al., 1987; Schwartz, 1988; Scudder, 1987; Thomsen, et al., 1987].

Computations carried out in this paper use 7 - 5/3. Although the electrons

carry a significant parallel electric current, the parallel electric current

makes no contribution to the Lorentz forces. According to the gyration theory

of charged particles, the Lorentz force induced by the magnetic field

configuration on electrons is negligible because the electrons are nearly

isotropic [Equation (23)]. In the equation of motion for electrons, the

inertia term is negligible because the electron kinetic energy is much less

than the electron thermal energy. The x-component of the equation of motion

for electrons can be reduced to

dP e

dx neeE c°s2 8 (43)

Under the polytropic law one can calculate the electrostatic potential rise

across a shock from (43)

e[4] - 7k<cos'28>[Te]/(7 - I). (44)

Here the pair of angle brackets denote the average value of a physical

quantity inside the shock layer.

We assume that the distribution functions of the solar wind alpha particles

and protons have similar asymmetries with respect to the magnetic field line.

The alpha particle thermal anisotropy is generally slightly, but perhaps not

significantly lower than that for protons near I AU [Bosqued et al., 1977;

Hundhausen et al., 1970; Marsch et al. 1982; 0gilvie et al., 1980]. The ratios

P1p/Plp and PII_/PI= can be functions of x. If we assume that Pllp/Pip -

PII=/PI=, then we can write (26) and (27) as

18



Fp-

Pp

Pp + Pa

(45)

P,,.,,

Pp + Pa

(46)

Now, we can express the integrals for F_ and G_ in the following form:

and

n_

Fo " Za <--> [Pe] " <ra>

n e

2
[By ]

8_

(47)

Bx[By]
G= - Z= < n=By > [Pe] + <r=> (48)

neB x 4=

Since we do not know the detailed structure of the flow and field inside the

shock layer, we have to use an approximate method to estimate those average

values of physical properties which appear in equations (44), (47) and (48).

We use the average of the values on the two sides of the shock layer co

represent the average, namely <Q> - (QI + Q2 )/2" If Q2 is an unknown variable

of the equation system, an iteration scheme is used to calculate the average

values.

We calculate the flow conditions downstream of slow shocks, with a

particular interest in the two ratios Ta2/Tp2, and Ua2/Up2. For a given

combination of the plasma _ value, the shock angle 01, and a dimensionless

shock speed, the shock Math number or the shock Alfven number A - Uxl/(a I cos

81), we first calculate the ratios B2/B I, p2/Pl , Ux2/Uxl, Uy2/Uy I, T2/T I and

82 using the simple direct method of W-hang [1987] for the MHD Rankine-Hugoniot

relation. Then we calculate the flow conditions of alpha particles for the

ratios n_2/n_l, Uox2/Uaxl, Uay2/U=yl and To2/Tal across the shock layer

19



following the method developed in section 2D for a given the initial helium to

hydrogen abundance ratio eI - n=i/npl. The third step is to calculate the flow

conditions of protons using formulas developed in section 2C. The solutions

can be organized as functions of four dimensionless parameters: 8, 01 , eI plus

A or H.

3B. Alpha Particles

The shock relations formulated in the de Hoffmann-Teller frame of reference

have a singularity at 91 - 90 °. The iteration scheme also becomes difficult to

converge for nearly perpendicular shocks. We carry out numerical solutions for

0 ° _ 01 _ 60 °. For a given combination of _ and _i' we can construct constant

contour plots for T=2/Tp2 and U=2/Up2 on M,81 plane as shown in Figures I and

2. The thick lines represent the constant contours for T_2/Tp2 and thin lines

for U_2/Up2. The two panels in Figure I show that the variation in the helium

to hydrogen abundance ratio, eI - 0.05 and 0.i0, produces very insignificant

changes for T=2/Tp2 and U=2/Up2. The domain of solution for slow shocks is

bounded on the right by a curve representing M - Mma x. Slow shocks are

evolutionary for i < M _ Mma x. Four contour plots with varying _ values are

shown in Figure 2. The plasma $ value has a stronger effect on the solutions

of T=2/Tp2 and U=2/Up2. The variation in $ substantially changes the upper

limit of the slow Math number. As $ changes from 0.01 to 0.20, Mma x decreases

from =Ii.0 to =2.5. At very small 8, Mma x varies as J(l.2/_).

The flow parameters upstream of the coronal slow shock may be estimated to

be in the range of $ = 0.02, M > 3.0 and 15 ° _ 91 _ 45 ° [Whang, 1982, Figure

I]. From Figure 2, we find that immediately downstream of the coronal slow

shock the temperature ratio T_/Tp should be in the range between 3 to 4 and

the average speed ratio U_/Up should be slightly greater than i. The ion

20



temperatures approximately proportional to the ion masses can be expected to

preserve between the corona and 0.3 AU.

21



4. Other Minor Ions

4A. Computations

The three-fluid model can be used to calculate the conditions of other

minor ions across a slow shock. In this case the MHD fluid consists of

electrons e, protons p and a species of minor ions i - 1606+, 28Si 8+ , 56Fe16+

or others. We can assume that n i << np. Under this assumption, we can use np _

he, Up - U, and F i - <Pi/Pp> in the computation. Figures 3-5 shows the contour

plots for the ratios Ui2 to the fluid velocity U 2 and Ti2 to fluid temperature

T 2 respectively for 1606+, 28Si8+ and 56Fe16+ at two _ values. Once again

these figures show that the temperature ratio proportional to ion mass is the

most important dynamical effect of shock wave on minor ions. The coronal slow

shock convert a part of the kinetic energy to increase the thermal energy. A

careful examination of Figures 4 and 5 reveals a striking result that the

constant contours for Ui2 and Ti2/m i are almost identical in these plots.

4B. Similarity Solutions for Heavy Ions

For heavy minor ions, because Z i is much greater than I Equations (32) and

(34) show that the magnetic Lorentz force becomes less important as compared

with the electric Lorentz force. Because m i is much greater than mp, in the

upstream side of the slow shock the thermal energy is much less than the

kinetic energy. If we neglect these small order terms, then we can arrange the

jump conditions for heavy ions in the following form:

ni2

--.Uix 2 - Uxl

nil

Z i ni Bx 2

ni2 2 kTi2) + -- I--eE dx--(Uix 2 + - Uxl 2 B--_
nil m i m i nil

(49)

(50)
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and

ni2 Zi f ni BxBy

--Uix2Uiy2nil - UxlUy I + --miJ --eEnil -_- dx

2
Ui2 5 kTi2 UI2 Z i

--+ -__ .___[_]
2 2 m i 2 m i

(51)

(52)

Here we have a system of four equations for four unknowns ni2/nil , Uix2, Uiy2,

and kTi2/m i. In the limit of n i << np, protons and electrons are responsible

for the setting up of the electric field inside the shock layer and the

variation of the magnetic field across the shock layer. If we consider two

kinds of heavy ions having the same ratios Zi/m i across the same shock wave,

the two flows are governed by the same system of four equations. All

corresponding terms on the right hand sides of the two systems are identical.

The two equation systems have the same solutions. The two flows are described

by a set of similarity solutions. This similarity relationship explains that

no noticeable differences exist between the computational results in Figure 4

for Si and in Figure 5 for Fe. The similarity solution for kTi/m i means that

across the coronal slow shock the temperatures are proportional to the masses

for heavy ions.
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5. New Support for the Coronal Slow Shock

We use the fluid equations for the conservation of mass, momentum and

energy to describe the ion flow across a postulated coronal slow shock

predicted to occur in the low _ coronal space between 4 and I0 solar radii.

From figures 1 5 we can see that on the downstream side of the coronal slow

shock, for He, O, Si, and Fe the ion temperatures are approximately

proportional to the ion masses and the average ion velocities are slightly

greater than the proton velocity. The result is consistent with the ion

temperatures and velocities observed in the inner solar wind. We infer this

result as a new support for the possible existence of coronal slow shocks.

If the coronal slow shock indeed exists, our understanding of the solar

wind process will be significantly revised. There exists one illustrative

example which calculates the solar wind flow associated with the possibly

existing coronal slow shocks [Whang, 1986]. The example has calculate a strong

latitudinal variation of the solar wind, the terminal speed at the pole is

greater than that at the equator by a factor of 2 and the plasma density at

the pole is less than that at the equator by a factor of three. The low-

density and high-speed solar wind at the pole region should be directly

observable from Ulysses spacecraft.

The support provided by this study of minor ions across slow shocks should

stimulate modelers to consider the coronal slow shock in their solar wind

models. A systematic study of coronal slow shocks should produce more

quantitative solutions from which we can estimate the range of variation for

important shock parameters such as the position and the shock strength and

identify the range of coronal conditions under which the coronal slow shocks

may exist. Because the predicted coronal slow shock is within the reach of the
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future Solar Probe spacecraft, continued theoretical studies of the coronal

slow shock will become very helpful in the planning of the Solar Probe mission

and its experiments.
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Figure Captions

Fig. i The thick lines represent the constant contours for T_2/Tp2 and thin

lines for U_2/Up2. The two panels show that the variation in _l produces very

insignificant changes for T_2/Tp2 and U_2/Up2.

Fig. 2. Four contour plots for slow shocks with _i - 0.05 and _ - 0.01, 0.02,

0.i0 and 0.20 show that the plasma _ value has a strong effect on the

solutions of T=2/Tp2 and U=2/Up2.

Fig. 3. The three-fluid model is used to calculate the conditions of other

minor ions across a slow shock. Two contour plots show the ratios Ui2/U2 and

Ti2/T2 for i - 1606+ with _ - 0.01 and 0.I.

Fig. A. Two contour plots for i - 28Si8+ with _ - 0.01 and 0.I. The ion

temperature ratio proportional to ion mass is the most important dynamical

effect of shock wave on minor ions.

Fig. 5. Two contour plots for i - 56Fe16+ with _ - 0.01 and 0.i. Wealso

obtain a similarity solution for heavy ions to explain the reason that no

noticeable differences exist between the computational results in Figure A for

Si and in Figure 5 for Fe.
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